

QUESTION

The <u>process</u> starts when you ask a <u>question</u> about something you <u>observe</u> why?

Why?

When?

When?

It needs to be testable

RESEARCH

Don't start from NOTHING
Research what is already

KNOWN about your
question. Learn from
others who may have already
conducted Experiments
Your question
may already be
ANSWEYED:

SCIENTIFIC METHOD

COLLECT DATA

Collect all of your <u>data</u> and <u>observations</u> in a <u>journal</u> Record it <u>accurately</u> and don't try to make it <u>fit</u> your hubothesis

Use correct ___

EXPERIMENT

Designed to <u>test</u> your <u>hybothesis</u> It should be a <u>fair</u> test with appropriate <u>variables</u> and should be <u>repeated</u> by you and be able to be repeated by <u>others</u>

HYPOTHESIS

A hypothesis is an educated <u>QUESS</u>
about the <u>ANSWEY</u> to your

question. It allows for a

<u>prediction</u>

It needs to be easy to

measure and not based on non-testable Opinion

ANALYZE

units

Organize and analyze your data it may help to use a chart or graph to help visualize

your data.

Did you get any unexpected results

CONCLUSION

Developing a <u>CONCLUSION</u> is
the point when you reach a
determination about
your <u>hupothesis</u>
Was it <u>right</u> or
<u>wrong</u>? If it
was wrong, you may go
back and

revise it

REPORT

Regardless if your hypothesis
was right or wrong,
you now have information
to share!
It could be through a report
to your classmates, a
science fair
or even published in a
science journal